Well-posedness result for the Kuramoto–Velarde equation

نویسندگان

چکیده

Abstract The Kuramoto–Velarde equation describes slow space-time variations of disturbances at interfaces, diffusion–reaction fronts and plasma instability fronts. It also Benard–Marangoni cells that occur when there is large surface tension on the interface in a microgravity environment. Under appropriate assumption initial data, time T , coefficients such equation, we prove well-posedness classical solutions for Cauchy problem, associated with this equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ill-posedness Result for the Bbm Equation

We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in H(R), s < 0 in the sense that the flow-map u0 7→ u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from H(R) to even D′(R) at any fixed t > 0 small enough. This result is sharp.

متن کامل

The Well-posedness Ofthe Kuramoto-sivashinsky Equation

The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction-diffusion systems, flame-propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of quadratic nonlinearity and arbitrary linear parabolic part. We show that such equations are well-posed, thus admitting ...

متن کامل

Sharp ill-posedness result for the periodic Benjamin-Ono equation

We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.

متن کامل

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

Sharp Local Well-posedness Results for the Nonlinear Wave Equation

This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bollettino Dell'unione Matematica Italiana

سال: 2021

ISSN: ['2198-2759', '1972-6724']

DOI: https://doi.org/10.1007/s40574-021-00303-7